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Abstract 
 

We study radial weighted Segal-Bargmann spaces 

 

and investigate the norms of monomials in these spaces. It is well-known that 
2

0
!kz k . However, we cannot find in closed 

form the norms 
1

kz  and 
1

kz


. The purpose of this work is to establish an upper bound for 

2 2

1 1

4

0

k k

k

z z

z

 . 

 

Keywords: weighted Segal-Bargmann, asymptotic, norm 

 

 

1. Introduction  
 

 The Segal-Bargmann space (also called a Fock 

space) is the holomorphic function space HL2(ℂ, μ) 

where
21

( )
z

z e



 . It is a Hilbert space of holomorphic 

functions on ℂ with inner product given by 

 

 
See Bargmann (1961), Hall (2000), Le (2017), and Soltani 

(2006). The norm of Zk in this space can be calculated using 

polar coordinates as follows: 

 

Therefore, the set 

0
!

k

k

z

k





 
 
 

forms an orthonormal basis for 

this space (Hall, 2000). 

We commonly weight the measure by multiplying 

with a nonnegative function in weighted Segal-Bargmann 
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space or weighted Fock space. However, there are different varieties of these spaces. For example, the author of Soltani (2006) 

defined and investigated a weighted Fock space associated with the perturbed Dunkl operator. The inner product in this space is 

given by 

 

where  
   

 
   

1/ 2, ,
2 2

e o

f z f z f z f z
f z f z

   
     and a measure  Qdm z

 associated with a function Q. In 

Bergman (2017) and Escudero, Haimi, and Romero (2021), a weighted Fock space is defined as HL2(ℂ,
  2 ,
z

HL e


) for some 

plurisubharmonic function (z). In (Choe & Nam, 2019), the t-weighted α-Fock space is introduced as a space consisting of all 

holomorphic functions f on ℂn such that the integral 

 
where 0, 0 p     and  dV z  is the volume measure on ℂn. The radial weighted Segal-Bargmann space is the variant 

that we employ in this paper. For    :h z h z , this weighted Segal-Bargmann space consists of all holomorphic functions 

on ℂ such that  

 
(See (Baranov, Belov & Borichev, 2018).)  

In this paper, we let 
21

( )
z

z e



 and denote the classical Segal-Bargmann space by 

  
By multiplying a positive function (z) to the measure dμ(z), we obtain another holomorphic function space HL2(ℂ, 

μ). This new space will be referred to as a weighted Segal-Bargmann space. To make use of polar coordinates as we compute 

the norm 
0

kz , one may assume that the function  is rotation invariant as  z  . Since the function 

 
21 z

z e



 depends only on z , the space HL2(ℂ, μ) is a radial weighted Segal-Bargmann space. 

Let 
1

z
e   and 

1

z
e


  . Then we define the spaces H1 and H-1as follows. 

 
Consider 

 
where 1a  . Now, the integral 

22 1k ar rr e dr 

  no longer is expressible with elementary functions. However, the integral   

                              is still finite because the term  
2

z
z e


 dominates all other terms. 

 

Despite the fact that the formula for                                is implicit, the behavior of the growth of 
2

k

a
z  in 

terms of k is remarkably similar to that of 
2

0

kz . We shall show in Section 2 that the functions 
22 1 ,k rr e 

22 1k r rr e 
and 

22 1k r rr e  
are all concentrated towards the peaks of these functions. As a result, the norms 

2

0
,kz

2

1

kz  and 
2

1

kz


can be 

approximated asymptotically by definite integrals. 
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In Chailuek and Senmoh (2020), the authors show that the boundedness of 

2 2

4

k k

k

z z

z

 



 plays an important role in a 

proof of the dual of a generalized Bergman space,    2 2, * ,d dHL HL     under the integral pairing 

     
( 1)

2
, 1

d

d

f g f z g z c z dz




 



 
 

for    , , ,d df H B g H B   . 

 Despite the fact that the formulas for 
2

1

kz and  
2

1

kz


are implicit, we will show in Section 3 that 

2 2

1 1

4

0

k k

k

z z

z

  is 

asymptotically bounded above by a constant. 

 

2. Norms of Monomials in Segal-Bargmann Spaces 
 

 In the classical Segal-Bargamann space, the norm of a monomial can be computed explicitly as 

2 2
2

2
2 1 2 1

0
0 0 0

1
2 !k k r k rz r e drd r e dr k






 

       
. Consider the graph of 

22 1( ) k r

kf r r e  . It resembles a Gaussian-shaped wave 

function that propagates to the right as k  increases. (Figure 1.)  

In this section, we will show that the function kf  behaves like a Gaussian-shaped wave function in the sense that it is 

concentrated towards its peak and likely to have a finite width which is measured from where the function is somehow cut off. 

Consequently, the integral 
22 1

0

k rr e dr


 

 can be estimated by a definite integral 

0
2 2

2

2 1 2 1

0 0

r

k r k rr e dr r e dr


   

 ℂ
0

2 2

2

2 1 2 1

0 0

r

k r k rr e dr r e dr


   

  for some 
0 0r  . 

As previously stated, explicit formulas for 
1

kz  and 
1

kz


are unavailable. However, when we compare the graphs 

of 
22 1

, 1( ) k r r

kf r r e  

   

 
 

Figure 1. The graphs of  
22 1k r

kf r r e  for different k’s. 

and  
22 1

,1( ) k r r

kf r r e  to that of 
22 1( ) k r

kf r r e  . We can see that they are similarly concentrated towards their peaks and 

have finite widths. (Figure 2.) 

 
 

Figure 2. The graphs of    , 1 ,1,k kf r f r
 and  kf r . 
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So, it makes sense to estimate those integrals by definite integrals. Therefore, the goals of this section are to compare 
2

1

kz


 and 
2

1

kz  with 
2

0

kz  as we obtain 

 
for some 

0 0
ˆ , 0r r  . We begin by generating some relevant identities as follows. 

Lemma 2.1 
2

0
!kz k  where k is a nonnegative integer. 

Proof. We compute 
2

0

kz  by induction on k. For k = 0, 

2 2

0
0

1 1
lim

2 2

t
r r

t
re dr e



 


  

. 

For 1k  , integrating by parts gives  

 
2

2

2

2 1 2 1

0 0

2( 1) 1

0

2
2

.

r
k r k

k r

e
r e dr kr dr

k r e dr

  
  



  

 
    

 



 



 

Therefore, 22 1

0

!

2

k r k
r e dr



  
 and hence 

2

0
!kz k . 

Lemma 2.2 For a nonnegative integer n and , 0a b  . 

  
1

00

!
1

!

ax

ib n
n ab

n
i

abn
x e dx e

a i

 




 
  

 
 


. (2.1) 

Proof. Integration by parts gives 

 

1

2 1

0 0

1
0

! !

!
1 .

!

bb n ax n ax ax ax
n ax

n n

i
n

ab

n
i

x e nx e n xe n e
x e dx

a a a a

abn
e

a i

    









     

 
  

 
 





 

Lemma 2.3 For 
 2

0

2

04

0

0

42 1
, lim 0

2 !

i
k

r

k
i

rk
r e

i







  . 

Proof. For 0,1,2, ,i k , we have 1 4 2i k    for all positive integer k.  

Thus 

 

2 2 1

0 0(4 ) (4 )

! 1 !

i ir r

i i






 and hence 

 
 

     
 2 2

0 0

2 2

0 0 4 24 4

0

4 4 4 2
0 1 1

! ! !

i k k
k

kr r

i

r r k
e e k e k

i k k

  




     . 

It’s not difficult to understand that the last quantity tends to zero. 

Next, we will show that 
2

0

kz  is asymptotically equal to a definite integral as follows. 

Proposition 2.4 Let 0,1,2,3,k   and 
0

2 1

2

k
r


  be the critical point of 

22 1( ) k r

kf r r e  . Then  

Proof. From Lemma 2.1, we obtain  

 22 1

0

!

2

k r k
r e dr



  
.                     (2.2) 

Substitute , 1n k a  , and 2

04b r  in the equation (2.1), to obtain 



92 P. Wannateeradet & K. Chailuek / Songklanakarin J. Sci. Technol. 45 (1), 88-96, 2023 

  
2

0 0
22

0

22 4
042 1

00 0

41 !
1

2 2 !

i
r r k

rk r k s

i

rk
r e dr s e ds e

i

  



 
   
 
 

 
.   (2.3) 

From equations (2.2) and (2.3), we obtain 

 
0

2

2
0

2

2

2 1
2

040

02 1

0

4
1

!

r

k r
i

k
r

ik r

r e dr
r

e
i

r e dr

 




 

 





. 

From Lemma 2.3, we obtain 

 2
0

2

04

0

4
lim 0

!

i
k

r

k
i

r
e

i






 . 

Thus, 

 
0

2

2
0

2

2

2 1
2

040

02 1

0

4
lim lim 1 1

!

r

k r
i

k
r

k k
ik r

r e dr
r

e
i

r e dr

 



 
 

 
   
 
 






. 

 

Therefore,  

 

Recall that 
22

2 1

1
0

2k k r rz r e dr


    and 
22

2 1

1
0

2k k r rz r e dr


  


  . 

Although we can derive the closed form of the integral 
22 1

0

k rr e dr


 

  using integration by substitution and induction, there is no 

elementary function whose derivative is 
22 1k r rr e  

 or 
22 1k r rr e 
. The functions 

22 1k r rr e  
 or 

22 1k r rr e 
 behave similarly to 

the function  
22 1k r

kf r r e   when k is fixed.  

As a result, we focus our attention on the asymptotic approximation of 
2 2

1 0

k kz z  and 
2 2

1 0

k kz z


. 

Proposition 2.5 Let k = 0,1,2,3, … . Then 

0
2

0
2

ˆ2

2 1
2

01
2 2

2 1
0

0

r

k r r
k

r
k

k r

r e dr
z

z
r e dr

  



 







0
2

0
2

ˆ2

2 1
2

01
2 2

2 1
0

0

r

k r r
k

r
k

k r

r e dr
z

z
r e dr

  



 





 and 

0
2

0
2

2

2 1
2

01

2 2

2 1
0

0

r

k r r
k

r
k

k r

r e dr
z

z
r e dr

 

 







0
2

0
2

2

2 1
2

01

2 2

2 1
0

0

r

k r r
k

r
k

k r

r e dr
z

z
r e dr

 

 





 

where 
0 0

2 1 1 16 9
ˆ,

2 4

k k
r r

   
   and 

0

1 16 9

4

k
r

 
  are the critical points of 

2 22 1 2 1

, 1( ) , ( )k r k r r

k kf r r e f r r e    

   

and 
22 1

,1( ) k r r

kf r r e  , respectively. 

Proof. Consider 

0
22

0

0 0
2 2

ˆ2
2 12 1

2

ˆ201

2 2 2

2 1 2 1
0

0 0

r
k r rk r r

k

r

r r
k

k r k r

r e drr e dr
z

z
r e dr r e dr



    



   





 

  

0
22

0

0 0
2 2

ˆ2
2 12 1

2

ˆ201

2 2 2

2 1 2 1
0

0 0

r
k r rk r r

k

r

r r
k

k r k r

r e drr e dr
z

z
r e dr r e dr



    



   





 

. 

Since 
2 22 1 2 10 k r r k rr e r e      ,  

0
2 2 2 2

0 0

0 0 0
2 2 2

ˆ2
2 1 2 1 2 1 2 1

ˆ ˆ2 2 0 0

2 2 2

2 1 2 1 2 1

0 0 0

.

r
k r r k r k r k r

r r

r r r

k r k r k r

r e dr r e dr r e dr r e dr

r e dr r e dr r e dr

  
        

     



 

   

  
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By using integration by substitution and substituting n = k, 1a  , and 2

04b r  into the equation (2.1), we obtain 

       0
22

0

2ˆ2
0ˆ42 1

00

ˆ4!
1

2 !

i
r k

rk r

i

rk
r e dr e

i

 



 
  
 
 


.                                   (2.4) 

From equations (2.2), (2.3) and (2.4), we obtain 

2

0

0
2

2 1

ˆ2

2

2 1

0

lim 0

k r r

r

rk
k r

r e dr

r e dr



  


 







. 

Therefore, 

 
Now, consider 

 
Let r be an element in an interval  02 ,r  . The function 0re e is decreasing and 0re e  as r ;  on the other hand, the 

function  
2 1 2 11

k kr r
   is increasing and  

2 1 2 11 1
k kr r
    as r . Consider 

02r r . We see that 

0

2 1

0

2

0

2 1

2

k

r

re

e r


 

  
 

for all k. Thus, we obtain 
2 1

1
k

r

e r

e r


 

  
 

and hence  
2 12 1 11

kk rr r e
    for all 

02r r . Therefore, 

   
22

0 0

2 1 12 1

2 2

1
k rk r r

r r

r e dr r e dr
 

       . 

By using integration by substitution and equations (2.1) and (2.2), we have  

        
2 2

0

0

2
2 1 1 (2 1) 0

02

(2 1)! !
1 1

2 2 !

ik
k r r

ir

rk k
r e dr e

i


    



 
    

 
 .                  (2.5) 

From equations (2.3) and (2.5), we obtain 

   
2

0

0
2

2 1 1

2

2

2 1

0

1

lim 0

k r

r

rk
k r

r e dr

r e dr


  


 









. 

 

 

Therefore, we obtain 

 

 

 

 

3. The Boundedness of 

2 2

1 1

4

0

k k

k

z z

z


 

 It is easy to see that 
2 2 2

1 0 1

k k kz z z

  . This implies that the ratio 

2 2

1 0

k kz z


 may decrease, whilst the 

ratio 
2 2

1 0

k kz z  may increase. We shall demonstrate in this section that these two quantities are mutually compensated 
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resulting in the boundedness of 

2 2

1 1

4

0

k k

k

z z

z


. In addition, the upper bound is involved in the peaks of 

, 1,k kf f 
 and 

,1kf . 

Since 
0 0 0r̂ r r

0 0 0r̂ r r
0 0 0r̂ r r and 

0 0 0 0̂r r r r 
0 0 0 0̂r r r r  , it should come as no surprise that the values    0 , 1 0̂,k kf r f r

 and  ,1 0kf r  are 

somehow offset.  
 

Theorem 3.1 Let k = 0,1,2,3,… . Then 

 
Proof. From the previous section, we have 

 

 

                         (2.6) 

 

 

 

First, we consider the definite integral 

 
0 0 0

22

2 2 2

2 1 ln2 1 ( )

0 0 0

r r r

r k rk r f rr e dr e dr e dr
         

where  2( ) 2 1 lnf r r k r    . 

The Taylor series expansion of  f r  about a point 
0r r  is given by 

 
 

 0

0

0 !

n
n

n

f r
f r r r

n





   

with the interval of convergence  00,2r . Thus, 

 
    

    
 

2
0 0 0

0 0
0 0 0 0

3

''2 2 '
2! !

0 0

n
n

n

f r r r f rr r f r f r r r r r
nf r

e dr e dr






    

  . 

We have  0' 0f r   and  0'' 4f r   . If we consider k  , then 
0( ) 0mf r   for all 3.m  Therefore, 

         
0 0 0

2 2
0 00

0

2 2

2( ) 2

0 0

r r r

f r f rf r r r u

r

e dr e e dr e e du  



                     (2.7) 

where 
0u r r  . 

Next, we consider the definite integral 

   
0 0 0

22

2 2 2

2 1 ln2 1

0 0 0

r r r

r r k r f rk r rr e dr e dr e dr
         

where    2 2 1 lnf r r r k r    . 

Similarly, we have 

                     

     (2.8) 

           

where 
0u r r   and 

     

                        (2.9) 

 

 

where    2ˆ 2 1 lnf r r r k r      and 
0

ˆ ˆu r r  .  
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ℂ 

Observe that 
0 0 0r̂ r r
0 0 0r̂ r r 

0 0 0r̂ r r as k  . Thus, 

  
Therefore, 

 
Next, we compute 

   0

1
2 2 1 2 1 ln

2
f r k k k

 
      

 

 

and 

     0 0

1 1ˆ ˆ 2 1 2 1 ln
4 2

f r f r k k k
 

       
 

. 

Therefore      0 0 0

1ˆ ˆ 2
4

f r f r f r   . This yields 

 

Finally, we obtain that 

2 2

1 1

4

0

k k

k

z z

z

  is asymptotically less than a constant 

1

4e . 

We notice that the estimates in (2.7), (2.8) and (2.9) look similar to the integral asymptotic         
 

2

''

b
g t g c

a

f t e dt e f c
g c

  



 

  

       
 

2

''

b
g t g c

a

f t e dt e f c
g c

  



 

  as   where c represents the critical point of g. Using Taylor’s expansion and Laplace’s method, 

the integral is involved in the value at the critical point. 

 

 

4. Conclusions 

In this paper, we obtained that 

2 2

1 1

4

0

k k

k

z z

z

  is asymptotically less than the constant 

1

4e . This implies that 

2 2

1 1

4

0

k k

k

z z

z

  is bounded and independent of k. Future research could use the boundedness of 

2 2

1 1

4

0

k k

k

z z

z

  to describe the dual 

of reciprocal weighted Segal-Bargmann spaces,  
1 1*H H  under the integral pairing 

   
2

0

1
,

z
F S F z S z e dz




 

 

where 
1F H  and 

1S H . 
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